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Abstract

We propose a variety of models of random walk, discrete in space and time, suitable for
simulating stable random variables of arbitrary index � (0¡�62), in the symmetric case. We
show that by properly scaled transition to vanishing space and time steps our random walk models
converge to the corresponding continuous Markovian stochastic processes which we refer to as
L�evy–Feller di�usion processes. c© 1999 Elsevier Science B.V. All rights reserved.

PACS: 02.50.-r; 02.70.-c; 05.40.+j
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1. Introduction

By a L�evy–Feller di�usion process we mean a Markovian process governed by a
stable probability density function (pdf) evolving in time, g�(x; t; �), whose spatial
Fourier transform (the characteristic function) reads

ĝ�(�; t; �) =
∫ +∞

−∞
ei�xg�(x; t; �) dx = exp(−t|�|�ei(sign �)��=2) ; (1.1)

where x; �∈R; t ¿ 0. The two relevant parameters, �; called the index of stability, and
� (related to the asymmetry), improperly referred to as the skewness, are real numbers
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subject to the conditions (see, e.g. [1])

0¡�62; |�|6
{
�; if 0¡�61 ;
2− �; if 1¡�62 :

(1.2)

By introducing the similarity variable xt−1=�, we can write g�(x; t; �)=t−1=�p�(xt−1=�; �),
where p�(x; �) is the stable pdf at t=1. The speci�c form of the characteristic function
(1.1) allows us to recognize g�(x; t; �) as the Green function (fundamental solution) of
the Cauchy problem

@
@t
u(x; t) = D��[u(x; t)]; u(x; 0) = �(x); x∈R; t ¿ 0 ; (1.3)

where D�� is the pseudo-di�erential operator with symbol

D̂�� =−|�|�ei(sign �)��=2 : (1.4)

Let us recall that a generic pseudo-di�erential operator A, acting with respect to the
variable x∈R; is de�ned through its Fourier representation, namely ∫ +∞

−∞ ei�xA[�(x)]

dx=Â(�)�̂(�), where �(x) denotes a su�ciently well-behaved function in R, and Â(�)
is referred to as symbol of A, given as Â(�) = (Ae−i�x)e+i�x.
With the names of L�evy and Feller we have intended to honour both Paul L�evy [4]

who �rst introduced the class of stable distributions, see [2–4] and William Feller [5]
who �rst investigated the semigroups generated by a pseudo-di�erential equation of
type (1.3)–(1.4). For �= 2 and �= 1 (with �= 0) we recover the standard Gaussian
and Cauchy pdf’s

g2(x; t; 0) =
1
2
√
�
t−1=2 exp

(
−x

2

4t

)
; g1(x; t; 0) =

1
�

t
x2 + t2

: (1.5)

In physics, the �rst recognition that the (symmetric) L�evy distribution could be char-
acterized via a pseudo-di�erential operator of type (1.3)–(1.4) was made explicitly by
West and Seshadri [6]. Recently, Goren
o and Mainardi [7–9] have revised Feller’s
original arguments by interpreting (1.3) as a space-fractional di�usion equation (of or-
der � and “skewness” �) and have provided a variety of related random walk models,
discrete in space and time, which by properly scaled transition to vanishing space and
time steps converge to the corresponding continuous L�evy–Feller processes. In other
words the discrete probability distributions generated by the random walk models have
been proved to belong to the domain of attraction of the corresponding stable distri-
bution.
Here, limiting ourselves to the symmetric case (�=0), we present the main features

of the random walk models by Goren
o and Mainardi, and we display preliminary
results of a few numerical case studies, which can be of some interest in econophysics.
The L�evy statistics in modelling 
uctuations of economical and �nancial variables,
formerly used by Mandelbrot in the early sixties, is still adopted with success, see, e.g.
[10–12].



R. Goren
o et al. / Physica A 269 (1999) 79–89 81

2. Outline of the general theory

Let Y be an integer-valued random variable and let the random variables Y1; Y2; Y3; : : :
be iid (= independent identically distributed), all having their probability distribution
common with Y . We de�ne a spatial-temporal grid {(xj; tn) | j∈Z; n∈N0} by xj =
xj(h) = jh; tn = tn(�) = n�, where h¿ 0 and �¿ 0. Then we consider the sequence of
random variables

Sn = hY1 + hY2 + · · ·+ hYn; n∈N ; (2.1)

with (for convenience) S0=0, and interpret it as follows. A particle, sitting in x=x0=0
at time t= t0 = 0 �nds itself at a later instant t= tn in point x= Sn which is an integer
multiple of h. We recognize the pk=P(Y =k) (for k ∈Z) as “transition probabilities”:
pk is the probability of a particle jumping from a point xj = Sn to a point xj+k = Sn+1
as time proceeds from tn to tn+1. All pk are non-negative, and their sum equals 1.
The probability yj(tn) of sojourn of our particle in point xj at instant tn obeys the

transition law

yj(tn+1) =
+∞∑
k=−∞

pkyj−k(tn); yj(0) = �j0; j∈Z; n∈N0 (2.2)

which has the form of a discrete convolution. Hence, introducing generating functions

p̃(z) =
+∞∑
j=−∞

pjz j; ỹ n(z) =
+∞∑
j=−∞

yj(tn)z j ; (2.3)

we obtain

ỹ n(z) = ỹ 0(z)[p̃(z)]
n = [p̃(z)]n; n∈N0 : (2.4)

The power series in (2.3) and (2.4) are absolutely and uniformly convergent on |z|=1
and assume the value 1 at z=1. Putting z=ei�h; �∈R, and observing z j=ei�jh=ei� xj ,
we recognize p̂(�; h) = p̃(ei�h) and ŷ(�; tn; h) = ỹ n(e

i�h) as characteristic functions of
the random variables hY and Sn, respectively.
Our aim is to approximate the L�evy–Feller di�usion process, which is governed by

the evolution equation (1.3), arbitrarily well. To this purpose we introduce a strictly
monotonic scaling relation � = �(h)→ 0 as h→ 0. We will �x t ¿ 0 and let h (and
likewise �) go to zero over such values that always n (=t=� = t=�(h)) is a positive
integer. Then we have the equivalences

n→∞ ⇔ h→ 0⇔ �→ 0 ;

and h depends on �, �nally on n, so that h=h(n): Replacing h by h(n) in (2.1) we obtain
a sequence of random variables Xn with characteristic functions ŷ(�; tn; h) = [p̃(ei�h)]n

(note that now tn = t is �xed). Invoking Theorem 3:6:1 of Lukacs [13], what remains
to be shown is that ŷ(�; t; h)→ exp(−t|�|�) as h→ 0, the characteristic function of the
corresponding symmetric L�evy–Feller process. For this it su�ces that, for �xed � 6= 0,

log[ŷ(�; t; h)] ≡ t
�(h)

log[p̃(ei�h)]→ − t|�|� as h→ 0 : (2.5)
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Our random walk can be interpreted as a “di�erence scheme” to approximate the
evolution equation (1.3), if we write (2.2) in the equivalent form, observing the scaling
relation,

yj(tn+1)− yj(tn)
�

=
1
�(h)

[
(p0 − 1)yj(tn) +

∑
k 6=0

pkyj−k(tn)

]
: (2.6)

In fact, after division by the spatial mesh-width h, the LHS is the explicit discrete ap-
proximation to the �rst-order time derivative @u(x; t)=@t, and the RHS can be considered
as a particular discrete approximation to the space pseudo-di�erential term D�0[u(x; t)],
provided we mean yj(tn) =

∫ xj+h=2
xj−h=2 u(x; tn) dx ≈ hu(xj; tn) with yj(0) = �j 0.

3. The random walk models

From the previous section we have learnt that, in order to construct discrete random
walk models which are convergent (in distribution) to the (symmetric) stable pdf’s, the
clue points are: (1) to guess a suitable generating function p̃(z), whose coe�cients
of its power series expansion provide the transition probabilities, (2) to determine the
corresponding scaling relation �= �(h) which ensures the required convergence.
In the classical case of the Gaussian distribution (�=2) the matter is easily treated if

we remember that the corresponding density is the fundamental solution of the standard
di�usion equation, which is known to be well approximated via the �nite-di�erence
equation

yj(tn+1)− yj(tn)
�

=
yj+1(tn)− 2yj(tn) + yj−1(tn)

h2
; yj(0) = �j 0 : (3.1)

In this case, introducing the scaling parameter �=�=h2, so �=�(h)=�h2, the transition
probabilities turn out to be

p0 = 1− 2�; p±1 = �; p±k = 0; k = 2; 3 : : : ; (3.2)

subject to the condition 0¡�61=2. Thus the generating function is

p̃(z) = 1 + �[z − 2 + z−1] : (3.3)

The proof of the convergence to the Gaussian is simple since one easily �nds [t=(�h2)]×
log[p̃(ei�h]→ − t�2 as h→ 0. The scheme (3.2) means that for approximation of the
standard Gaussian process the corresponding random walk model exhibits only jumps
of one step to the right or one to the left or jumps of width zero. For the stable
non Gaussian processes we expect to �nd a non-polynomial generating function with
in�nitely many transition coe�cients which imply the occurrence of arbitrarily large
jumps. It is common practice to refer to the corresponding random walks as to L�evy

ights.
In the following, limiting ourselves to the symmetric cases (� = 0), we shall re-

sume the main features of three di�erent random walk models, referred to as (RW1),
(RW2), (RW3), of which Goren
o and Mainardi have proved the convergence to the
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corresponding continuous processes. For each model we give the generating function
p̃(z) with the transition probabilities pk and the scaling relation � = �(h), referring
to the original papers for details. From the analysis of the classical Gaussian case we
�nd it natural to �rst introduce the scaling parameter � = �=h� with 0¡�62 but, as
we shall show later, this will not necessarily imply �(h) = �h�, with � constant for
�xed �.
The model (RW1) has been introduced and discussed in [7], starting from the iden-

ti�cation of the operator D�0 in the framework of fractional calculus, see [5], and then
applying, in the authors’ original approach, the Gr�unwald–Letnikov discretized scheme.
For this model we need to keep distinct the two cases (a) 0¡�¡ 1 and (b) 1¡�62,
the case �= 1 being excluded in this treatment. The generating function is

p̃(z) =


1− �

2 cos(��=2) [(1− z)
� + (1− z−1)�]; 0¡�¡ 1 ;

1− �
2 cos(��=2) [z

−1(1− z)� + z(1− z−1)�]; 1¡�62 :
(3.4)

For both cases the scaling relation is con�rmed to be �=�(h)=�h�, but the parameter
� is subject to di�erent restrictions to ensure that 06p0¡ 1.
In the case (a) we have 0¡�6 cos(��=2) and

p0 = 1− �
cos(��=2) ;

p±k = (−1)k+1 �
2 cos(��=2)

(�
k

)
for k = 1; 2; 3; : : : :

(3.5a)

In the case (b) we have 0¡�6|cos(��=2)|=� and
p0 = 1− ��

|cos(��=2)| ; p±1 =
�

2|cos(��=2)|
[(�
2

)
+ 1

]
;

p±k = (−1)k+1 �
2|cos(��=2)|

(
�

k + 1

)
for k = 2; 3; 4; : : : :

(3.5b)

We note that, whereas the classical Gaussian random walk (3.2) is promptly recovered
from (3.5b) for � = 2, the random walk for the Cauchy process (� = 1) cannot be
obtained, neither directly nor by a passage to the limit �→ 1. Indeed, in both the
limits �→ 1− and �→ 1+ the permissible range of the scaling factor � is vanishing.
In numerical practice the consequence will be that if � is near 1 the convergence is
slow: for good approximation we will need a very small step-time � with respect to
the step-length h.
Apart from (RW1) we shall show how the two other random walk models, (RW2)

and (RW3), that we are going to brie
y discuss, exhibit a smooth scaling law in the
range 0¡�¡ 2, so the case � = 1 is no longer singular. However, “there is no free
lunch”. We have to pay for the good behaviour at � = 1 with bad behaviour at � = 2
in a sense to be seen later.
The model (RW2) is obtained by imposing for the transition probabilities an expres-

sion in terms of binomial coe�cients, as suggested from (3.5b), which is required to
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be regular in the limit as �→ 1, namely

p0 = 1− 2�; p±k = (−1)k+1 �
�− 1

(
�

k + 1

)
for k = 1; 2; 3; : : : ; (3.6)

where �, subject to the condition 0¡�61=2, is to be determined. The model has been
extensively discussed in [9] whereas the particular case � = 1 (related to the Cauchy
process) has been formerly presented in [8]. To guarantee the convergence for all
� (0¡�62) to the corresponding continuous process, the asymptotics as h→ 0 still
requires a scaling relation of the kind �= �h� (with � constant), namely

�= �(h) =


2� cos(��=2)
1− � h� if 0¡�¡ 2; � 6= 1 ;

��h if �= 1 ;

�h2 if �= 2 :

(3.7)

We recognize that for 0¡�¡ 2 the model (RW2) exhibits a smooth scaling law but
a discontinuity is present at �= 2 as can be seen by taking the limit as �→ 2−. This
allows us to recover for � = 2 the Gaussian model (3.2)–(3.3), but it shows that
in numerical practice when � is near 2 the convergence is expected to be slow. For
0¡�¡ 2 we obtain the generating functions and the transition probabilities as follow.
Putting �(z) = [(1− z)�−1 − 1] for � 6= 1, and introducing the scaling parameter �, we
have

p̃(z) =


1− �

2 cos(��=2) [(1− z
−1)�(z) + (1− z)�(z−1)]; � 6= 1 ;

1− �
� [(1− z

−1)log(1− z) + (1− z)log(1− z−1)]; �= 1 :
(3.8)

For 0¡�¡ 2; � 6= 1, we have 0¡�6cos(��=2)=(1− �) and
p0 = 1− �(1− �)

cos(��=2) ;

p±k = (−1)k �
2 cos(��=2)

(
�

k + 1

)
for k = 1; 2; 3; : : : ;

(3.9)

for �= 1 we have 0¡�6�=2 and

p0 = 1− 2�
� ; p±k =

�
�

1
k(k + 1)

for k = 1; 2; 3; 4; : : : : (3.10)

In both models (RW1), (RW2), the generating function is expressed in terms of ele-
mentary functions and the transition coe�cients, for 0¡�¡ 2; exhibit an asymptotic
behaviour as |k|→∞ consistent with that of the power-law tails of the stable densities
as |x|→∞; see, e.g. [1]. Indeed we obtain

pk ∼ ��(�+ 1)sin(��=2)� |k|−(�+1) as |k|→∞; 0¡�¡ 2 ; (3.11)

p�(x; 0) ∼ �(�+ 1)sin(��=2)� |x|−(�+1) as |x|→∞; 0¡�¡ 2 : (3.12)
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The asymptotic behaviour of the stable densities is the starting point for the random
walk model (RW3) in that, following Gillis and Weiss [14], we require that all pk
for k 6= 0 are proportional to |k|−(�+1): However, the simplicity of the starting point
leads to di�culties for treating this model since the generating function is no longer
elementary, a fact that makes the convergence proof a really hard a�air. We need to
recall the following special functions

�(�) =
∞∑
k=1

k−�; �¿ 1; �(z; �) =
∞∑
k=1

zk

k�
; |z|¡ 1; �∈R ; (3.13)

respectively, known as the Riemann zeta function and the polylogarithmic function.
This model has been extensively discussed in [9] (see also [14]), where the following
generating function is derived:

p̃(z) = 1− 2��(�+ 1) + �[�(z; �+ 1) + �(z−1; �+ 1)] : (3.14)

Here � = � + 1¿ 1 so �(z; �) is by its power series also de�ned on the periphery
|z|= 1 of the unit circle. Then we get a pure power-law random walk with

p0 = 1− 2��(�+ 1); pk = �|k|−(�+1) for k 6= 0 ; (3.15)

where �; subject to the condition 0¡�61=[2�(�+1)]; is to be determined. To ensure
the convergence to the corresponding continuous process the following scaling relation
must hold:

�= �(h) =


��

�(�+ 1)sin(��=2)h
� if 0¡�¡ 2 ;

�h2|log h| if �= 2 :
(3.16)

It is interesting to note that in the case �= 2 the classical random walk model (3.2)–
(3.3) is no longer recovered, since now arbitrarily large jumps occur (with a probability
decaying as k−3) as in the L�evy 
ights. Nevertheless, through the scaling relation
(3.16), this random walk converges to the continuous Gaussian process. Thus this
model gives us the opportunity to verify that a random walk with in�nite variance
steps may (slowly) converge to the Gaussian, in agreement with a general theorem on
the domain of attraction of the normal law, see, e.g. [15].

4. Numerical results

In general the random walk models are not only valuable from the conceptual point
of view for visualizing what the di�usion means but also for numerical calculations,
either as Monte Carlo simulation of particle paths in a di�usion process or as discrete
imitation of the process in form of redistribution (from one time level to the next) of
clumps of an extensive quantity (across the spatial grid points). Our models can be
used in at least three di�erent ways: (a) as �nite di�erence schemes for approximate
calculation of symmetric stable densities; (b) for producing sample paths of individual
particles performing the random walk; (c) for producing histograms of the approximate
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realization of the densities g� by simulating many individual paths with the same
number of time steps and making statistics of the �nal positions of the particles.
For numerical simulations of stable random variables di�erent algorithms have been

provided by a number of specialists, including Chambers et al. [16], Bartels [17],
Mantegna [18], Janicki and Weron [19], Samorodnitsky and Taqqu [20]. Our present
approach for treating L�evy statistics has been carried out independent of all the above
references but uniquely based on the random walk models presented here, so, as far
as we know, our results would be in the great part original.
Having preliminarily checked a su�cient level of accuracy for our �nite di�erence

schemes with the existing tables of stable densities, here we present some results on the
simulation of the sample paths and histograms corresponding to some typical values of
the index of stability, namely �=1; 1:5; 2, in Figs. 1, 2, 3, respectively. In practice, in
our numerical studies truncation is required in two ways. It is impossible to simulate
all in�nitely many discrete probabilities, so the size of possible jumps must be limited
to a maximal possible jump length. The other truncation is required if a priori one
wants a de�nite region of space to be considered in which the walk takes place. Then,
particles leaving this space have been ignored. Our simulations, based on one million
of realizations, have been carried out in the interval |x|64. All the histograms refer
to stable densities at t = 1 for |x|63; the space interval being reduced to avoid the
border e�ects. The sample paths are plotted against the time steps, up to 1200 for
� = 1 and up to 2000 for � = 1:5; 2; so they refer to di�erent �nal times, namely
t = 1:87; 1:33; 0:8; respectively. The transition probabilities have been chosen from our
random walk models as follows: �=1 from (RW2), see (3.10), with scaling parameter
�=�=4; �=1:5; from (RW1), see (3.5b), with �=(2=3)cos(3�=4); for �=2; from the
standard model, see (3.2), with �= 1=4: The cases �= 1 (Cauchy process) and �= 2
(normal process) have been considered for a possible comparison with the standard

Fig. 1. Sample path (left) and histogram (right) for � = 1 (Cauchy).
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Fig. 2. Sample path (left) and histogram (right) for � = 1:5.

Fig. 3. Sample path (left) and histogram (right) for � = 2 (Gauss).

and accurate algorithms existing in the literature, whereas � = 1:5 has been chosen
in view of possible applications in econophysics where usually the index of stability
ranges from 1.4 to 1.7, see, e.g. [10,11].

5. Conclusions

For the simulation of Markovian processes characterized by symmetric L�evy proba-
bility densities evolving in time we have presented three di�erent random walk models,
discrete in space and time, by giving their respective transition probabilities. We have
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indicated how, by use of generating functions, convergence for properly scaled tran-
sition to vanishing steps of space and time can be analysed, and we have hinted at
peculiarities occurring at the particular stability indices �=1 (the Cauchy process) and
� = 2 (the Gauss process). We have displayed preliminary results of a few numerical
case studies concerning sample paths and histograms to check the e�ciency of our
algorithms. From the sample paths one can recognize the “wild” character of the L�evy

ights with respect to the “tame” character of the Brownian motion.
We expect that our arguments can be relevant in di�erent �elds of physics includ-

ing the emerging one of econophysics, where stable distributions are becoming more
common. In statistical physics the stable distributions play a key role in the (wonder-
ful) world of random walks constructed by the late Montroll and continued through
his school, see, e.g. [21–23]. Also Tsallis and his associates have recognized the key
role of stable distributions with respect to a generalized theory of thermostatics, see,
e.g. [24], and references therein. Here, we have (only brie
y) pointed out the rela-
tion between L�evy statistics and space-fractional di�usion equations. However, stable
distributions turn out to be related also with time-fractional di�usion equations, see,
e.g. [25]. Furthermore, this topic is relevant for fractal phenomena, where di�erential
equations of fractional order are usually adopted to describe their evolution, see, e.g.
[26–28], and reference herein.
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